Finite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods

In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and computational mechanics 2018-03, Vol.4 (2), p.125-132
Hauptverfasser: Dongming Wei, Xuefeng Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electric field to allow a smooth transi-tion of the electric field between center of a beam and edges of the beam. The numerical results obtained by the procedure are tabulated and compared with some existing results for beams in MEMS switches in literature. This procedure produces stable and accurate numerical results for simulation of these MEMS beams and can be a useful and efficient alternative for design and determining onset of pull-in for such devices.
ISSN:2383-4536
2383-4536
DOI:10.22055/jacm.2017.22700.1139