Discovering natural products as potential inhibitors of SARS-CoV-2 spike proteins

The ongoing global pandemic caused by the SARS-CoV-2 virus has demanded the urgent search for effective therapeutic interventions. In response, our research aimed at identifying natural products (NPs) with potential inhibitory effects on the entry of the SARS-CoV-2 spike (S) protein into host cells....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2025-01, Vol.15 (1), p.200-19, Article 200
Hauptverfasser: Alqaaf, Muhammad, Nasution, Ahmad Kamal, Karim, Mohammad Bozlul, Rumman, Mahfujul Islam, Sedayu, Muhammad Hendrick, Supriyanti, Retno, Ono, Naoaki, Altaf-Ul-Amin, Md, Kanaya, Shigehiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing global pandemic caused by the SARS-CoV-2 virus has demanded the urgent search for effective therapeutic interventions. In response, our research aimed at identifying natural products (NPs) with potential inhibitory effects on the entry of the SARS-CoV-2 spike (S) protein into host cells. Utilizing the Protein Data Bank Japan (PDBJ) and BindingDB databases, we isolated 204 S-glycoprotein sequences and conducted a clustering analysis to identify similarities and differences among them. We subsequently identified 33,722 binding molecules (BMs) by matching them with the sequences of 204 S-glycoproteins and compared them with 52,107 secondary metabolites (SMs) from the KNApSAcK database to identify potential inhibitors. We conducted docking and drug-likeness property analyses to identify several SMs with potential as drug candidates based on binding energy (BE), no Lipinski’s rule violation (LV), psychochemical properties within the pink area of the bioavailability radar, and a bioavailability score (BAS) not less than 0.55. Fourteen SMs were predicted through computational analysis as potential candidates for inhibiting the three major types of S proteins. Our study provides a foundation for further experimental validation of these compounds as potential therapeutic agents against SARS-CoV-2.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-83637-4