Towards a High Rejection Desalination Membrane: The Confined Growth of Polyamide Nanofilm Induced by Alkyl-Capped Graphene Oxide

In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2021-06, Vol.11 (7), p.488
Hauptverfasser: Wu, Biqin, Zhang, Na, Zhang, Mengling, Wang, Shuhao, Song, Xiaoxiao, Zhou, Yong, Qi, Saren, Gao, Congjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite (TFN) membrane reached 59.6 L m−2 h−1, which was approximately 17% more than the virgin TFC membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl) achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the TFC membrane without confined growth.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes11070488