Hallmarks of primary neurulation are conserved in the zebrafish forebrain

Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hinge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-01, Vol.4 (1), p.147-147, Article 147
Hauptverfasser: Werner, Jonathan M., Negesse, Maraki Y., Brooks, Dominique L., Caldwell, Allyson R., Johnson, Jafira M., Brewster, Rachel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation. Jonathan Werner, Maraki Negesse et al. visualize zebrafish neurulation during development to determine whether hallmarks of neural tube formation in other vertebrates also apply to zebrafish. They find that neural tube formation in the forebrain shares features such as hingepoints and neural folds with other vertebrates, demonstrating the strength of the zebrafish model for understanding human neurulation.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-01655-8