Vibration-Damping technology in tennis racquets: Effects on vibration transfer to the arm, muscle fatigue and tennis performance

High vibration transfer from a tennis racquet to the player may cause discomfort, and is hypothesized to influence performance and the onset of muscle fatigue. This study examined a racquet with a novel vibration damping technology (VDT) designed to mitigate frame vibration. Racquet vibration, post-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports medicine and health science 2019-12, Vol.1 (1), p.49-58
Hauptverfasser: Yeh, I-Ling, Elangovan, Naveen, Feczer, Rebecca, Khosravani, Sanaz, Mahnan, Arash, Konczak, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High vibration transfer from a tennis racquet to the player may cause discomfort, and is hypothesized to influence performance and the onset of muscle fatigue. This study examined a racquet with a novel vibration damping technology (VDT) designed to mitigate frame vibration. Racquet vibration, post-impact vibration transfer to the player, arm electromyographic activity and tennis performance were compared to a non-VDT racquet. Nineteen young adult, competitive tennis players hit forehands and serves until near exhaustion on two days; using one of the two racquets each day. Tri-axial accelerometers mounted to racquet shaft, hand and forearm recorded vibration behaviour. Surface electromyography recorded activity of five arm muscles. In comparison to the non-VDT racquet, the VDT design showed: 1) A significantly lower mean normalised acceleration signal energy at the racquet during unfatigued play (−40%) and at near exhaustion (−34%), which corresponded to a 20–25% lower signal energy at the hand. 2) Reduced signs of arm muscle fatigue at near exhaustion, which was most pronounced in biceps and wrist extensors. 3) Players hit 11% more forehands and placed 40% more hits in the target area at near exhaustion. Conclusion: VDT effectively reduces racquet vibration. Initial evidence indicates that it may delay muscle fatigue, which was associated with increased ball placement accuracy.
ISSN:2666-3376
2666-3376
DOI:10.1016/j.smhs.2019.09.001