Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model

The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2020, Vol.2020 (2020), p.1-24
Hauptverfasser: Jegede, Segun L., Kibria, B. M. Golam, Ayinde, Kayode, Lukman, Adewale F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2020/3192852