RANDOM MATRICES WITH SLOW CORRELATION DECAY
We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix Dy...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2019, Vol.7, Article e8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki
et al.
[‘Stability of the matrix Dyson equation and random matrices with correlations’,
Probab. Theory Related Fields
173
(1–2) (2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2019.2 |