Reinforcement-Learning-Based Tracking Control with Fixed-Time Prescribed Performance for Reusable Launch Vehicle under Input Constraints

This paper proposes a novel reinforcement learning (RL)-based tracking control scheme with fixed-time prescribed performance for a reusable launch vehicle subject to parametric uncertainties, external disturbances, and input constraints. First, a fixed-time prescribed performance function is employe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-08, Vol.12 (15), p.7436
Hauptverfasser: Xu, Shihao, Guan, Yingzi, Wei, Changzhu, Li, Yulong, Xu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel reinforcement learning (RL)-based tracking control scheme with fixed-time prescribed performance for a reusable launch vehicle subject to parametric uncertainties, external disturbances, and input constraints. First, a fixed-time prescribed performance function is employed to restrain attitude tracking errors, and an equivalent unconstrained system is derived via an error transformation technique. Then, a hyperbolic tangent function is incorporated into the optimal performance index of the unconstrained system to tackle the input constraints. Subsequently, an actor-critic RL framework with super-twisting-like sliding mode control is constructed to establish a practical solution for the optimal control problem. Benefiting from the proposed scheme, the robustness of the RL-based controller against unknown dynamics is enhanced, and the control performance can be qualitatively prearranged by users. Theoretical analysis shows that the attitude tracking errors converge to a preset region within a preassigned fixed time, and the weight estimation errors of the actor-critic networks are uniformly ultimately bounded. Finally, comparative numerical simulation results are provided to illustrate the effectiveness and improved performance of the proposed control scheme.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12157436