Modeling of the Human Cerebral Collateral Circulation: Evaluation of the Impact on the Cerebral Perfusion in Case of Ischemic Stroke

Stroke is the third-most cause of death in developed countries. A new promising treatment method in case of an ischemic stroke is selective intracarotid blood cooling combined with mechanical artery recanalization. However, the control of the treatment requires invasive or MRI-assisted measurement o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current directions in biomedical engineering 2019-09, Vol.5 (1), p.533-536
Hauptverfasser: Krames, Lorena, Daschner, Rosa, Lutz, Yannick, Loewe, Axel, Dössel, Olaf, Cattaneo, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stroke is the third-most cause of death in developed countries. A new promising treatment method in case of an ischemic stroke is selective intracarotid blood cooling combined with mechanical artery recanalization. However, the control of the treatment requires invasive or MRI-assisted measurement of cerebral temperature. An auspicious alternative is the use of computational modeling. In this work, we extended an existing 1D hemodynamics model including the characteristics of the anterior, middle and posterior cerebral artery. Furthermore, seven ipsilateral anastomoses were additionally integrated for each hemisphere. A potential stenosis was placed into the M1 segment of the middle cerebral artery, due to the highest risk of occlusion there. The extended model was evaluated for various degrees of collateralization (“poor”, “partial” and “good”) and degrees of stenosis (0%, 50%, 75% and 99.9%). Moreover, cerebral autoregulation was considered in the model. The higher the degree of collateralization and the degree of stenosis, the higher was the blood flow through the collaterals. Hence, a patient with a good collateralization could compensate a higher degree of occlusion and potentially has a better outcome after an ischemic stroke. For a 99.9% stenosis, an increased summed mean blood flow through the collaterals of +97.7% was predicted in case of good collateralization. Consequently, the blood supply via the terminal branches of the middle cerebral artery could be compensated up to 44.4% to the physiological blood flow. In combination with a temperature model, our model of the cerebral collateral circulation can be used for tailored temperature prediction for patients to be treated with selective therapeutic hypothermia.
ISSN:2364-5504
2364-5504
DOI:10.1515/cdbme-2019-0134