Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients

Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational biomarkers from preclinical models. Here, we pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-10, Vol.11 (1), p.5485-13, Article 5485
Hauptverfasser: Kong, JungHo, Lee, Heetak, Kim, Donghyo, Han, Seong Kyu, Ha, Doyeon, Shin, Kunyoo, Kim, Sanguk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational biomarkers from preclinical models. Here, we present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data derived from three-dimensional organoid culture models. The biomarkers identified by our approach accurately predict the drug responses of 114 colorectal cancer patients treated with 5-fluorouracil and 77 bladder cancer patients treated with cisplatin. We further confirm our biomarkers using external transcriptomic datasets of drug-sensitive and -resistant isogenic cancer cell lines. Finally, concordance analysis between the transcriptomic biomarkers and independent somatic mutation-based biomarkers further validate our method. This work presents a method to predict cancer patient drug responses using pharmacogenomic data derived from organoid models by combining the application of gene modules and network-based approaches. Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. Here, the authors present a machine-learning framework to identify robust drug biomarkers by taking advantage of network-based analyses using pharmacogenomic data.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-19313-8