Ultrasound Protects Human Chondrocytes from Biochemical and Ultrastructural Changes Induced by Oxidative Stress

The aim of the study was to assess the effects of therapeutic ultrasound (US) on oxidative stress (OS)-induced changes in cultured human chondrocytes (HCH). For this, monolayer HCH were randomized in three groups: a control group (CG), a group exposed to OS (OS group), and a group exposed to US and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-03, Vol.12 (5), p.2334
Hauptverfasser: Ungur, Rodica Ana, Muresan, Adriana, Olteanu, Diana Elena, Florea, Adrian, Ciortea, Viorela Mihaela, Irsay, Laszlo, Borda, Ileana Monica, Codea, Răzvan Andrei, Ober, Ciprian Andrei, Bâlici, Ștefana, Căinap, Simona, Dronca, Eleonora, Martiș (Petruț), Georgiana Smaranda, Onac, Ioana Anamaria, Suciu, Şoimiţa Mihaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the study was to assess the effects of therapeutic ultrasound (US) on oxidative stress (OS)-induced changes in cultured human chondrocytes (HCH). For this, monolayer HCH were randomized in three groups: a control group (CG), a group exposed to OS (OS group), and a group exposed to US and OS (US-OS group). US exposure of the chondrocytes was performed prior to OS induction by hydrogen peroxide. Transmission electron microscopy (TEM) was used to assess the chondrocytes ultrastructure. OS and inflammatory markers were recorded. Malondialdehyde (MDA) and tumor necrosis factor (TNF)-α were significantly higher (p < 0.05) in the OS group than in CG. In the US-OS group MDA and TNF-α were significantly lower (p < 0.05) than in the OS group. Finally, in the US-OS group MDA and TNF-α were lower than in CG, but without statistical significance. TEM showed normal chondrocytes in CG. In the OS group TEM showed necrotic chondrocytes and chondrocytes with a high degree of vacuolation and cell organelles damages. In the US-OS group the chondrocytes ultrastructure was well preserved, and autophagosomes were generated. In conclusion, US could protect chondrocytes from biochemical (lipid peroxidation, inflammatory markers synthesis) and ultrastructural changes induced by OS and could stimulate autophagosomes development.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12052334