Collineation group as a subgroup of the symmetric group
Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group of the set ψ. Suppose that H contains the projective group and an arbitrary s...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2013-01, Vol.11 (1), p.17-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let
H
be a closed (in the pointwise convergence topology) subgroup of the permutation group
of the set ψ. Suppose that
H
contains the projective group and an arbitrary self-bijection of
ψ
transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL(
d
+1,
q
),
d
≥ 2, J. London Math. Soc., 1974, 8(3), 426] that if ψ is finite then
H
contains the alternating subgroup
of
. We show in Theorem 3.1 that
H
=
, if ψ is infinite. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 2391-5455 |
DOI: | 10.2478/s11533-012-0131-6 |