Collineation group as a subgroup of the symmetric group

Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group of the set ψ. Suppose that H contains the projective group and an arbitrary s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics 2013-01, Vol.11 (1), p.17-26
Hauptverfasser: Bogomolov, Fedor, Rovinsky, Marat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group of the set ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ψ transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL( d +1, q ), d ≥ 2, J. London Math. Soc., 1974, 8(3), 426] that if ψ is finite then H contains the alternating subgroup of . We show in Theorem 3.1 that H = , if ψ is infinite.
ISSN:1895-1074
2391-5455
1644-3616
2391-5455
DOI:10.2478/s11533-012-0131-6