A Hamiltonian and geometric formulation of general Vlasov-Maxwell-type models
Three geometric formulations of the Hamiltonian structure of the macroscopic Maxwell equations are given: one in terms of the double de Rham complex, one in terms of L2 duality, and one utilizing an abstract notion of duality. The final of these is used to express the geometric and Hamiltonian struc...
Gespeichert in:
Veröffentlicht in: | Fundamental Plasma Physics 2023-06, Vol.5 (C), p.100016, Article 100016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three geometric formulations of the Hamiltonian structure of the macroscopic Maxwell equations are given: one in terms of the double de Rham complex, one in terms of L2 duality, and one utilizing an abstract notion of duality. The final of these is used to express the geometric and Hamiltonian structure of kinetic theories in general media. The Poisson bracket so stated is explicitly metric free. Finally, as a special case, the Lorentz covariance of such kinetic theories is investigated. We obtain a Lorentz covariant kinetic theory coupled to nonlinear electrodynamics such as Born-Infeld or Euler-Heisenberg electrodynamics. |
---|---|
ISSN: | 2772-8285 2772-8285 |
DOI: | 10.1016/j.fpp.2023.100016 |