Electrodeposition and Micro-Mechanical Property Characterization of Nickel–Cobalt Alloys toward Design of MEMS Components

Nickel–cobalt alloys were prepared by alloy electrodeposition with a sulfamate bath, and the mechanical properties on the micro-scale were evaluated for the application as micro-components in miniaturized electronic devices. Nickel bromide and a commercially available surface brightener were used as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochem (Basel, Switzerland) Switzerland), 2022-04, Vol.3 (2), p.198-210
Hauptverfasser: Jiang, Yiming, Chen, Chun-Yi, Luo, Xun, Yamane, Daisuke, Mizoguchi, Masanori, Kudo, Osamu, Maeda, Ryu, Sone, Masato, Chang, Tso-Fu Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nickel–cobalt alloys were prepared by alloy electrodeposition with a sulfamate bath, and the mechanical properties on the micro-scale were evaluated for the application as micro-components in miniaturized electronic devices. Nickel bromide and a commercially available surface brightener were used as the additives. The cobalt content increased from 21.5 to 60.1 at.% after addition of nickel bromide into the bath, and the grain size refined from 21.1 to 13.2 nm when the surface brightener was used. The mechanical properties on the micro-scale were evaluated by micro-compression test using micro-pillar type specimens fabricated by a focused ion beam system to take the sample size effect into consideration. The yield strength of the nickel–cobalt alloy having an average grain size at 13.9 nm and cobalt content of 66.6 at.% reached 2.37 GPa, revealing influences from the sample size, grain boundary strengthening, and solid solution strengthening effects.
ISSN:2673-3293
2673-3293
DOI:10.3390/electrochem3020012