Mortality Burden of Heatwaves in Sydney, Australia Is Exacerbated by the Urban Heat Island and Climate Change: Can Tree Cover Help Mitigate the Health Impacts?

Heatwaves are associated with increased mortality and are exacerbated by the urban heat island (UHI) effect. Thus, to inform climate change mitigation and adaptation, we quantified the mortality burden of historical heatwave days in Sydney, Australia, assessed the contribution of the UHI effect and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2022-05, Vol.13 (5), p.714
Hauptverfasser: Chaston, Timothy B., Broome, Richard A., Cooper, Nathan, Duck, Gerard, Geromboux, Christy, Guo, Yuming, Ji, Fei, Perkins-Kirkpatrick, Sarah, Zhang, Ying, Dissanayake, Gnanadarsha S., Morgan, Geoffrey G., Hanigan, Ivan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heatwaves are associated with increased mortality and are exacerbated by the urban heat island (UHI) effect. Thus, to inform climate change mitigation and adaptation, we quantified the mortality burden of historical heatwave days in Sydney, Australia, assessed the contribution of the UHI effect and used climate change projection data to estimate future health impacts. We also assessed the potential for tree cover to mitigate against the UHI effect. Mortality (2006–2018) records were linked with census population data, weather observations (1997–2016) and climate change projections to 2100. Heatwave-attributable excess deaths were calculated based on risk estimates from a published heatwave study of Sydney. High resolution satellite observations of UHI air temperature excesses and green cover were used to determine associated effects on heat-related mortality. These data show that >90% of heatwave days would not breach heatwave thresholds in Sydney if there were no UHI effect and that numbers of heatwave days could increase fourfold under the most extreme climate change scenario. We found that tree canopy reduces urban heat, and that widespread tree planting could offset the increases in heat-attributable deaths as climate warming progresses.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13050714