The YPLGVG sequence of the Nipah virus matrix protein is required for budding
Nipah virus (NiV) is a recently emerged paramyxovirus capable of causing fatal disease in a broad range of mammalian hosts, including humans. Together with Hendra virus (HeV), they comprise the genus Henipavirus in the family Paramyxoviridae. Recombinant expression systems have played a crucial role...
Gespeichert in:
Veröffentlicht in: | Virology journal 2008-11, Vol.5 (1), p.137-137, Article 137 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nipah virus (NiV) is a recently emerged paramyxovirus capable of causing fatal disease in a broad range of mammalian hosts, including humans. Together with Hendra virus (HeV), they comprise the genus Henipavirus in the family Paramyxoviridae. Recombinant expression systems have played a crucial role in studying the cell biology of these Biosafety Level-4 restricted viruses. Henipavirus assembly and budding occurs at the plasma membrane, although the details of this process remain poorly understood. Multivesicular body (MVB) proteins have been found to play a role in the budding of several enveloped viruses, including some paramyxoviruses, and the recruitment of MVB proteins by viral proteins possessing late budding domains (L-domains) has become an important concept in the viral budding process. Previously we developed a system for producing NiV virus-like particles (VLPs) and demonstrated that the matrix (M) protein possessed an intrinsic budding ability and played a major role in assembly. Here, we have used this system to further explore the budding process by analyzing elements within the M protein that are critical for particle release.
Using rationally targeted site-directed mutagenesis we show that a NiV M sequence YPLGVG is required for M budding and that mutation or deletion of the sequence abrogates budding ability. Replacement of the native and overlapping Ebola VP40 L-domains with the NiV sequence failed to rescue VP40 budding; however, it did induce the cellular morphology of extensive filamentous projection consistent with wild-type VP40-expressing cells. Cells expressing wild-type NiV M also displayed this morphology, which was dependent on the YPLGVG sequence, and deletion of the sequence also resulted in nuclear localization of M. Dominant-negative VPS4 proteins had no effect on NiV M budding, suggesting that unlike other viruses such as Ebola, NiV M accomplishes budding independent of MVB cellular proteins.
These data indicate that the YPLGVG motif within the NiV M protein plays an important role in M budding; however, involvement of any specific components of the cellular MVB sorting pathway in henipavirus budding remains to be demonstrated. Further investigation of henipavirus assembly and budding may yet reveal a novel mechanism(s) of viral assembly and release that could be applicable to other enveloped viruses or have therapeutic implications. |
---|---|
ISSN: | 1743-422X 1743-422X |
DOI: | 10.1186/1743-422x-5-137 |