Adjusting porosity and permeability estimation by nuclear magnetic resonance: a case study from a carbonate reservoir of south of Iran

The aim of this study is to assess the accuracy of nuclear magnetic resonance (NMR) method in estimating the porosity and permeability in a carbonate reservoir located in south of Iran. In this study, 26 carbonate samples were selected and common core and NMR experiments were performed. Comparison o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petroleum exploration and production technology 2018-12, Vol.8 (4), p.1113-1127
Hauptverfasser: Aghda, S. M. Fatemi, Taslimi, M., Fahimifar, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is to assess the accuracy of nuclear magnetic resonance (NMR) method in estimating the porosity and permeability in a carbonate reservoir located in south of Iran. In this study, 26 carbonate samples were selected and common core and NMR experiments were performed. Comparison of core and NMR porosity showed that NMR method is very accurate for estimation of porosity. However, after comparison of core and NMR permeability, it was found that NMR permeability estimation cannot be used with the common coefficients since they are calibrated in the clastic reservoirs. Therefore, it is necessary to modify coefficients in the permeability models of the considered reservoirs. For this purpose, 16 samples were selected to develop the model, and 10 samples for evaluating the accuracy of the model. In this study, free-fluid and mean T 2 models were two main models for permeability estimation using NMR method. Coefficients of the two above-mentioned models were modified in terms of maximizing the coefficient of determination of core permeability and calculated permeability using NMR permeability models. The proposed models were used to estimate permeability in 10 other samples for verifying the reliability of models.
ISSN:2190-0558
2190-0566
DOI:10.1007/s13202-018-0474-z