Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer

The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-01, Vol.13 (1), p.45-45, Article 45
Hauptverfasser: Sharpen, Jack D. A., Dolan, Brendan, Nyström, Elisabeth E. L., Birchenough, George M. H., Arike, Liisa, Martinez-Abad, Beatriz, Johansson, Malin E. V., Hansson, Gunnar C., Recktenwald, Christian V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis. The colonic mucus layer is an organized system providing a physical barrier against pathogens and simultaneously harbouring the commensal flora. Here the authors report that transglutaminase 3 activity contributes to homeostasis of the colonic mucus layer and the lack of this enzymatic activity leads to increased susceptibility against DSS-induced colitis in mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27743-1