Stable isotopes provide revised global limits of aerobic methane emissions from plants

Recently Keppler et al. (2006) discovered a surprising new source of methane – terrestrial plants under aerobic conditions, with an estimated global production of 62–236 Tg yr−1 by an unknown mechanism. This is ~10–40% of the annual total of methane entering the modern atmosphere and ~30–100% of ann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2007-01, Vol.7 (1), p.237-241
Hauptverfasser: Ferretti, D. F., Miller, J. B., White, J. W. C., Lassey, K. R., Lowe, D. C., Etheridge, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently Keppler et al. (2006) discovered a surprising new source of methane – terrestrial plants under aerobic conditions, with an estimated global production of 62–236 Tg yr−1 by an unknown mechanism. This is ~10–40% of the annual total of methane entering the modern atmosphere and ~30–100% of annual methane entering the pre-industrial (0 to 1700 AD) atmosphere. Here we test this reported global production of methane from plants against ice core records of atmospheric methane concentration (CH4) and stable carbon isotope ratios (δ13CH4) over the last 2000 years. Our top-down approach determines that global plant emissions must be much lower than proposed by Keppler et al. (2006) during the last 2000 years and are likely to lie in the range 0–46 Tg yr−1 and 0–176 Tg yr−1 during the pre-industrial and modern eras, respectively.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-7-237-2007