Generalised optical printing of photocurable metal chalcogenides

Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-09, Vol.13 (1), p.5262-5262, Article 5262
Hauptverfasser: Baek, Seongheon, Ban, Hyeong Woo, Jeong, Sanggyun, Heo, Seung Hwae, Gu, Da Hwi, Choi, Wooyong, Choo, Seungjun, Park, Yae Eun, Yoo, Jisu, Choi, Moon Kee, Lee, Jiseok, Son, Jae Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials. Optical 3D printing techniques are low-cost mask-less patterning methods, but their application is limited by the number of printable materials. Here, the authors report a generalized optical method to print 2D or micrometre-thick 2.5D architectures based on metal chalcogenides inks, showing the realization of micro-scale thermoelectric generators.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33040-2