Microbial Ecology of Oxygen Minimum Zones Amidst Ocean Deoxygenation

Oxygen minimum zones (OMZs) have substantial effects on the global ecology and biogeochemical processes of marine microbes. However, the diversity and activity of OMZ microbes and their trophic interactions are only starting to be documented, especially in regard to the potential roles of viruses an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2021-10, Vol.12, p.748961
Hauptverfasser: Long, Andrew M, Jurgensen, Sophie K, Petchel, Ariel R, Savoie, Emily R, Brum, Jennifer R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxygen minimum zones (OMZs) have substantial effects on the global ecology and biogeochemical processes of marine microbes. However, the diversity and activity of OMZ microbes and their trophic interactions are only starting to be documented, especially in regard to the potential roles of viruses and protists. OMZs have expanded over the past 60 years and are predicted to expand due to anthropogenic climate change, furthering the need to understand these regions. This review summarizes the current knowledge of OMZ formation, the biotic and abiotic factors involved in OMZ expansion, and the microbial ecology of OMZs, emphasizing the importance of bacteria, archaea, viruses, and protists. We describe the recognized roles of OMZ microbes in carbon, nitrogen, and sulfur cycling, the potential of viruses in altering host metabolisms involved in these cycles, and the control of microbial populations by grazers and viruses. Further, we highlight the microbial community composition and roles of these organisms in oxic and anoxic depths within the water column and how these differences potentially inform how microbial communities will respond to deoxygenation. Additionally, the current literature on the alteration of microbial communities by other key climate change parameters such as temperature and pH are considered regarding how OMZ microbes might respond to these pressures. Finally, we discuss what knowledge gaps are present in understanding OMZ microbial communities and propose directions that will begin to close these gaps.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2021.748961