Image Semantic Segmentation Use Multiple-Threshold Probabilistic R-CNN with Feature Fusion
With continuous developments in deep learning, image semantic segmentation technology has also undergone great advancements and been widely used in many fields with higher segmentation accuracy. This paper proposes an image semantic segmentation algorithm based on a deep neural network. Based on the...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-02, Vol.13 (2), p.207 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With continuous developments in deep learning, image semantic segmentation technology has also undergone great advancements and been widely used in many fields with higher segmentation accuracy. This paper proposes an image semantic segmentation algorithm based on a deep neural network. Based on the Mask Scoring R-CNN, this algorithm uses a symmetrical feature pyramid network and adds a multiple-threshold architecture to improve the sample screening precision. We employ a probability model to optimize the mask branch of the model further to improve the algorithm accuracy for the segmentation of image edges. In addition, we adjust the loss function so that the experimental effect can be optimized. The experiments reveal that the algorithm improves the results. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13020207 |