A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point problems using subgradient extragradient method in Banach spaces

In this paper, we introduce an algorithm for solving variational inequalities problem with Lipschitz continuous and pseudomonotone mapping in Banach space. We modify the subgradient extragradient method with a new and simple iterative step size, and the strong convergence to a common solution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2022-01, Vol.7 (4), p.5015-5028
Hauptverfasser: Ma, Fei, Yang, Jun, Yin, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce an algorithm for solving variational inequalities problem with Lipschitz continuous and pseudomonotone mapping in Banach space. We modify the subgradient extragradient method with a new and simple iterative step size, and the strong convergence to a common solution of the variational inequalities and fixed point problems is established without the knowledge of the Lipschitz constant. Finally, a numerical experiment is given in support of our results.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022279