Quantum Codes as an Application of Constacyclic Codes

The main focus of this paper is to analyze the algebraic structure of constacyclic codes over the ring R=Fp+w1Fp+w2Fp+w22Fp+w1w2Fp+w1w22Fp, where w12−α2=0, w1w2=w2w1, w23−β2w2=0, and α,β∈Fp∖{0}, for a prime p. We begin by introducing a Gray map defined over R, which is associated with an invertible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2024-10, Vol.13 (10), p.697
Hauptverfasser: Raza, Mohd Arif, Ahmad, Mohammad Fareed, Alahmadi, Adel, Basaffar, Widyan, Gupta, Manish K., Rehman, Nadeem ur, Khan, Abdul Nadim, Shoaib, Hatoon, Sole, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main focus of this paper is to analyze the algebraic structure of constacyclic codes over the ring R=Fp+w1Fp+w2Fp+w22Fp+w1w2Fp+w1w22Fp, where w12−α2=0, w1w2=w2w1, w23−β2w2=0, and α,β∈Fp∖{0}, for a prime p. We begin by introducing a Gray map defined over R, which is associated with an invertible matrix. We demonstrate its advantages over the canonical Gray map through some examples. Finally, we create new and improved quantum codes from constacyclic codes over R using Calderbank–Shore–Steane (CSS) construction.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13100697