SSUM: Spatial–Spectral Unified Mamba for Hyperspectral Image Classification

How to effectively extract spectral and spatial information and apply it to hyperspectral image classification (HSIC) has been a hot research topic. In recent years, the transformer-based HSIC models have attracted much interest due to their advantages in long-distance modeling of spatial and spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-12, Vol.16 (24), p.4653
Hauptverfasser: Lu, Song, Zhang, Min, Huo, Yu, Wang, Chenhao, Wang, Jingwen, Gao, Chenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How to effectively extract spectral and spatial information and apply it to hyperspectral image classification (HSIC) has been a hot research topic. In recent years, the transformer-based HSIC models have attracted much interest due to their advantages in long-distance modeling of spatial and spectral features in hyperspectral images (HSIs). However, the transformer-based method suffers from high computational complexity, especially in HSIC tasks that require processing large amounts of data. In addition, the spatial variability inherent in HSIs limits the performance improvement of HSIC. To handle these challenges, a novel Spectral–Spatial Unified Mamba (SSUM) model is proposed, which introduces the State Space Model (SSM) into HSIC tasks to reduce computational complexity and improve model performance. The SSUM model is composed of two branches, i.e., the Spectral Mamba branch and the Spatial Mamba branch, designed to extract the features of HSIs from both spectral and spatial perspectives. Specifically, in the Spectral Mamba branch, a nearest-neighbor spectrum fusion (NSF) strategy is proposed to alleviate the interference caused by the spatial variability (i.e., same object having different spectra). In addition, a novel sub-spectrum scanning (SS) mechanism is proposed, which scans along the sub-spectrum dimension to enhance the model’s perception of subtle spectral details. In the Spatial Mamba branch, a Spatial Mamba (SM) module is designed by combining a 2D Selective Scan Module (SS2D) and Spatial Attention (SA) into a unified network to sufficiently extract the spatial features of HSIs. Finally, the classification results are derived by uniting the output feature of the Spectral Mamba and Spatial Mamba branch, thus improving the comprehensive performance of HSIC. The ablation studies verify the effectiveness of the proposed NSF, SS, and SM. Comparison experiments on four public HSI datasets show the superior of the proposed SSUM.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16244653