Surface Properties and Biological Activities on Bacteria Cells by Biobased Surfactants for Antifouling Applications

Microfouling is the deposition of inorganic and organic material on surfaces and can cause economic losses. This deposition affects the performance of vessels, causes corrosion, clogging of equipment and contaminates the surfaces of medical items and the surface of machinery that handles food; it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surfaces 2022-08, Vol.5 (3), p.383-394
Hauptverfasser: da Silva, Maria da Gloria C., da Silva, Maria Eduarda P., de Medeiros, Anderson O., Meira, Hugo M., Sarubbo, Leonie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfouling is the deposition of inorganic and organic material on surfaces and can cause economic losses. This deposition affects the performance of vessels, causes corrosion, clogging of equipment and contaminates the surfaces of medical items and the surface of machinery that handles food; it is controlled by cleaning products that contain synthetic surfactants in their formulations. Biobased products provide a promising basis to produce sustainable chemicals such as surfactants. In the present study, the biobased surfactants glyceryl laurate and hydroxystearic acid were synthesized and evaluated for stability at different pH values, salinity and temperatures. In addition, bioactivity tests against Pseudomonas aeruginosa (UCP 0992) and Bacillus cereus (UCP 1516) were also performed. Biobased surfactants glyceryl laurate and hydroxystearic acid showed excellent stability against temperature, pH, salinity and emulsifying activities for different kinds of oils; prevented bacterial adhesion by almost 100%; and affected the production of EPS by both bacteria and their consortium when compared to a synthetic surfactant SDS. The results showed the potential of these substances for application as an alternative antifouling non-biocide.
ISSN:2571-9637
2571-9637
DOI:10.3390/surfaces5030028