A Lane Level Bi-Directional Hybrid Path Planning Method Based on High Definition Map
A global reference path generated by a path search algorithm based on a road-level driving map cannot be directly used to complete the efficient autonomous path-following motion of autonomous vehicles due to the large computational load and insufficient path accuracy. To solve this problem, this pap...
Gespeichert in:
Veröffentlicht in: | World electric vehicle journal 2021-12, Vol.12 (4), p.227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A global reference path generated by a path search algorithm based on a road-level driving map cannot be directly used to complete the efficient autonomous path-following motion of autonomous vehicles due to the large computational load and insufficient path accuracy. To solve this problem, this paper proposes a lane-level bidirectional hybrid path planning method based on a high-definition map (HD map), which effectively completes the high-precision reference path planning task. First, the global driving environment information is extracted from the HD map, and the lane-level driving map is constructed. Real value mapping from the road network map to the driving cost is realized based on the road network information, road markings, and driving behavior data. Then, a hybrid path search method is carried out for the search space in a bidirectional search mode, where the stopping conditions of the search method are determined by the relaxation region in the two search processes. As the search process continues, the dimension of the relaxation region is updated to dynamically adjust the search scope to maintain the desired search efficiency and search effect. After the completion of the bidirectional search, the search results are evaluated and optimized to obtain the reference path with the optimal traffic cost. Finally, in an HD map based on a real scene, the path search performance of the proposed algorithm is compared with that of the simple bidirectional Dijkstra algorithm and the bidirectional BFS search algorithm. The results show that the proposed path search algorithm not only has a good optimization effect, but also has a high path search efficiency. |
---|---|
ISSN: | 2032-6653 2032-6653 |
DOI: | 10.3390/wevj12040227 |