On some geometric properties for the combination of generalized Lommel–Wright function

The scope of our investigation is to study the geometric properties of the normalized form of the combination of generalized Lommel–Wright function J ν , λ μ , m defined by J ν , λ μ , m ( z ) : = Γ m ( λ + 1 ) Γ ( λ + ν + 1 ) 2 2 λ + ν z 1 − ( ν / 2 ) − λ I ν , λ μ , m ( z ) , where I ν , λ μ , m (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2021-09, Vol.2021 (1), p.1-19, Article 158
Hauptverfasser: Zayed, Hanaa M., Bulboacă, Teodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The scope of our investigation is to study the geometric properties of the normalized form of the combination of generalized Lommel–Wright function J ν , λ μ , m defined by J ν , λ μ , m ( z ) : = Γ m ( λ + 1 ) Γ ( λ + ν + 1 ) 2 2 λ + ν z 1 − ( ν / 2 ) − λ I ν , λ μ , m ( z ) , where I ν , λ μ , m ( z ) : = ( 1 − 2 λ − ν ) J ν , λ μ , m ( z ) + z ( J ν , λ μ , m ( z ) ) ′ and J ν , λ μ , m ( z ) = ( z 2 ) 2 λ + ν ∑ n = 0 ∞ ( − 1 ) n Γ m ( n + λ + 1 ) Γ ( n μ + ν + λ + 1 ) ( z 2 ) 2 n , with m ∈ N , μ > 0 and λ , ν ∈ C , including starlikeness and convexity of order α ( 0 ≤ α < 1 ) in the open unit disc using the two-sided inequality for the Fox–Wright functions that has been proved by Pogány and Srivastava in (Comput. Math. Appl. 57(1):127–140, 2009 ). Further, the orders of starlikeness and convexity are also evaluated using some classical tools. We then compare the orders of starlikeness and convexity given by both techniques to illustrate the efficacy of the approach. In addition, we proved that for some values of α , if λ > − 1 then Re ( J ν , λ μ , m ( z ) / z ) > α , z ∈ U , and if λ ≥ ( 10 − 6 ) / 4 then the function ( J ν , λ μ , m ( z 2 ) / z ) ∗ sin z is close-to-convex with respect to 1 / 2 log ( ( 1 + z ) / ( 1 − z ) ) where ∗ stands for the Hadamard product (or convolution) of two power series.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-021-02690-z