Bisdemethoxycurcumin and Its Cyclized Pyrazole Analogue Differentially Disrupt Lipopolysaccharide Signalling in Human Monocyte-Derived Macrophages
Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues...
Gespeichert in:
Veröffentlicht in: | Mediators of inflammation 2018-01, Vol.2018 (2018), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues GG6 and GG9 in primary human blood-derived macrophages as well as the signalling pathways involved. Macrophages differentiated from peripheral blood monocytes for 7 days were activated with LPS or selective Toll-like receptor agonists for 24 h. The effects of test compounds on cytokine production and immunophenotypes evaluated as CD80+/CCR2+ and CD206+/CD163+ subsets were examined by ELISA and flow cytometry. Signalling pathways were probed by Western blot. Curcumin (2.5–10 μM) failed to suppress LPS-induced inflammatory responses. While GG6 reduced LPS-induced IκB-α degradation and showed a trend towards reduced interleukin-1β release, GG9 prevented the increase in proinflammatory CD80+ macrophage subset, downregulation of the anti-inflammatory CD206+/CD163+ subset, increase in p38 phosphorylation, and increase in cell-bound and secreted interleukin-1β stimulated by LPS, at least in part through signalling pathways not involving Toll-like receptor 4 and nuclear factor-κB. Thus, the curcumin analogue GG9 attenuated the LPS-induced inflammatory response in human blood-derived macrophages and may therefore represent an attractive chemical template for macrophage pharmacological targeting. |
---|---|
ISSN: | 0962-9351 1466-1861 |
DOI: | 10.1155/2018/2868702 |