Cellular Response of Neutrophils to Bismuth Subnitrate and Micronized Keratin Products In Vitro

The aim of this study was to assess the effect of bismuth subnitrate and micronized keratin on bovine neutrophils in vitro. We hypothesized that recruitment and activation of neutrophils into the teat canal and sinus are the mechanisms of action of bismuth subnitrate and keratin-based teat sealant f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary sciences 2020-07, Vol.7 (3), p.87
Hauptverfasser: Notcovich, Shirli, Williamson, Norman B., Yapura, Jimena, Schukken, Ynte, Heuer, Cord
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to assess the effect of bismuth subnitrate and micronized keratin on bovine neutrophils in vitro. We hypothesized that recruitment and activation of neutrophils into the teat canal and sinus are the mechanisms of action of bismuth subnitrate and keratin-based teat sealant formulations. To test this, a chemotaxis assay (Experiment 1) and a myeloperoxidase (MPO) assay (Experiment 2) were conducted in vitro. Blood was sampled from 12 mid-lactation dairy cows of variable ages. Neutrophils were extracted and diluted to obtain cell suspensions of approximately 106 cells/mL. In Experiment 1, test substances were placed in a 96-well plate, separated from the cell suspension by a 3 µm pore membrane and incubated for 3 h to allow neutrophils to migrate through the membrane. In Experiment 2, neutrophils were exposed to the test products and the amount of MPO released was measured by optical density. Results showed that neutrophils were not activated by bismuth or keratin products (p < 0.05) in all of the tests performed. These results suggest that the mechanisms of action of bismuth subnitrate and keratin-based teat sealants do not rely on neutrophil recruitment and activation in the teat canal and sinus after treatment.
ISSN:2306-7381
2306-7381
DOI:10.3390/vetsci7030087