A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts

There is interest in metal single atom catalysts due to their remarkable activity and stability. However, the synthesis of metal single atom catalysts remains somewhat ad hoc, with no universal strategy yet reported that allows their generic synthesis. Herein, we report a universal synthetic strateg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-10, Vol.10 (1), p.4585-9, Article 4585
Hauptverfasser: Yang, Hongzhou, Shang, Lu, Zhang, Qinghua, Shi, Run, Waterhouse, Geoffrey I. N., Gu, Lin, Zhang, Tierui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is interest in metal single atom catalysts due to their remarkable activity and stability. However, the synthesis of metal single atom catalysts remains somewhat ad hoc, with no universal strategy yet reported that allows their generic synthesis. Herein, we report a universal synthetic strategy that allows the synthesis of transition metal single atom catalysts containing Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pt or combinations thereof. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm that the transition metal atoms are uniformly dispersed over a carbon black support. The introduced synthetic method allows the production of carbon-supported metal single atom catalysts in large quantities (>1 kg scale) with high metal loadings. A Ni single atom catalyst exhibits outstanding activity for electrochemical reduction of carbon dioxide to carbon monoxide, achieving a 98.9% Faradaic efficiency at −1.2 V. Single-atom catalysts are a promising class of catalytic materials, but general synthetic methods are limited. Here, the authors develop a ligand-mediated strategy that allows the large-scale synthesis of diverse transition metal single atom catalysts supported on carbon.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12510-0