Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy
Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal str...
Gespeichert in:
Veröffentlicht in: | Biological research 2013, Vol.46 (3), p.251-255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSC) are envisioned as a therapeutic tool not only for cardiovascular diseases but also for other degenerative conditions. Our aim was to evaluate whether the intravenous administration of MSC modifies cardiac dysfunction in obese mice. To this end, C57BL/6 mice were fed a regular (normal) or high-fat diet (obese). Obese animals received the vehicle (obese), a single dose (obese + 1x MSC) or three doses (obese + 3x MSC) of 0.5x10(6) syngeneic MSC. Two to three months following MSC administration, cardiac function was assessed by cardiac catheterization, at basal condition and after a pharmacological stress. Compared to normal mice, obese mice presented hyperglycemia, hyperinsulinemia, hypercholesterolemia and cardiac dysfunction after stress condition. Exogenous MSC neither improved nor impaired this cardiac dysfunction. Thus, intravenous administration of MSC has neutral effect on obesity-induced diabetic cardiomyopathy. |
---|---|
ISSN: | 0716-9760 0717-6287 |
DOI: | 10.4067/S0716-97602013000300005 |