Vasorelaxant Effects of Syzygium samarangense (Blume) Merr. and L.M.Perry Extract Are Mediated by NO/cGMP Pathway in Isolated Rat Thoracic Aorta
Syzygium samarangense (Blume) Merr. and L.M.Perry is utilized widely in traditional medicine. We have reported previously a wide array of pharmacological properties of its leaf extract, among them anti-inflammatory, antioxidant, hepatoprotective, antidiabetic, antiulcer, and antitrypanosomal activit...
Gespeichert in:
Veröffentlicht in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-10, Vol.15 (11), p.1349 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Syzygium samarangense (Blume) Merr. and L.M.Perry is utilized widely in traditional medicine. We have reported previously a wide array of pharmacological properties of its leaf extract, among them anti-inflammatory, antioxidant, hepatoprotective, antidiabetic, antiulcer, and antitrypanosomal activities. We also annotated its chemical composition using LC-MS/MS. Here, we continue our investigations and evaluate the vasorelaxant effects of the leaf extract on aortic rings isolated from rats and explore the possible underlying mechanisms. S. samarangense extract induced a concentration dependent relaxation of the phenylephrine-precontracted aorta in the rat model. However, this effect disappeared upon removing the functional endothelium. Pretreating the aortic tissues either with propranolol or NG-nitro-L-arginine methyl ester inhibited the relaxation induced by the extract; however, atropine did not affect the extract-induced vasodilation. Meanwhile, adenylate cyclase inhibitor, MDL; specific guanylate cyclase inhibitor, ODQ; high extracellular KCl; and indomethacin as cyclooxygenase inhibitor inhibited the extract-induced vasodilation. On the other hand, incubation of S. samarangense extract with aortae sections having their intact endothelium pre-constricted using phenylephrine or KCl in media free of Ca2+ showed no effect on the constriction of the aortae vessels induced by Ca2+. Taken together, the present study suggests that S. samarangense extract dilates isolated aortic rings via endothelium-dependent nitric oxide (NO)/cGMP signaling. The observed biological effects could be attributed to its rich secondary metabolites. The specific mechanisms of the active ingredients of S. samarangense extract await further investigations. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph15111349 |