In Situ Compositional Analysis of Tomato Plants and Cell Wall Using Fiber Optic Fourier-Transform Near-Infrared Spectroscopy

This research was intended to define and interpret cell wall attributes and other chemical composition of eight different varieties of tomato plants by utilizing fiber optic Fourier-transform near-infrared spectroscopy (FT-NIR) to acquire in situ chemical signatures of leaf, flower, fruit, and stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Spectroscopy 2023-06, Vol.2023, p.1-13
Hauptverfasser: Tewari, Raghav, Joshi, Ritu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research was intended to define and interpret cell wall attributes and other chemical composition of eight different varieties of tomato plants by utilizing fiber optic Fourier-transform near-infrared spectroscopy (FT-NIR) to acquire in situ chemical signatures of leaf, flower, fruit, and stem of tomato plant and cell wall at different developmental stages. Chemical spectral signatures of the tomato’s leaf, flower, fruit, and stem were only acquired during its session and in live mode such as green, yellow, and red in cell wall color. The spectral signature analysis of each tomato plant was performed to see substantial differences in chemical compositions using chemometric data modeling of FT-NIR spectra. In addition, principal component analysis (PCA) was performed to discriminate leaf, flower, fruit, and stem from the same variety. PCA was also performed to differentiate eight different varieties of tomato plants. The study showed how in situ FT-NIR could distinguish eight types of tomato leaf, flower, fruit, and stem chemical composition at different developmental stages related to cell wall and other attributes. This study has also demonstrated how in situ FT-NIR can discriminate between rusty vs. healthy leaf and intact fruit vs. off-the-plant fruit. The main objective of this study is to present the chemical signature differences in the live and developing tomato plants to improve crucial factors of tomatoes that would benefit plant breeding, tomato cell wall study, and ultimately human health.
ISSN:2314-4920
2314-4939
DOI:10.1155/2023/2982941