Hardware Implementation of a Solar-Powered Buck-Boost Converter for Enhanced Cathodic Protection Using Texas Instruments C2000 Board

This article delves into the hardware implementation of a buck-boost converter on a Texas Instruments C2000 board, tailored for impressed current cathodic protection to safeguard submerged metal structures against corrosion. Impressed current cathodic protection is vital for combating corrosion in b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.74831-74842
Hauptverfasser: Fekik, Arezki, Mahdal, Miroslav, Lamine Hamida, Mohamed, Ghanes, Malek, Vaidyanathan, Sundarapandian, Bousbaine, Amar, Denoun, Hakim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article delves into the hardware implementation of a buck-boost converter on a Texas Instruments C2000 board, tailored for impressed current cathodic protection to safeguard submerged metal structures against corrosion. Impressed current cathodic protection is vital for combating corrosion in buried or submerged metal structures, where a reliable power supply is crucial. The use of solar energy captured by photovoltaic panels emerges as an environmentally sustainable and economically viable solution for this critical application. The paper examines the design, hardware implementation, and system performance, focusing on the integration of the Texas Instruments C2000 board which is, pivotal for the automation and success of the impressed current cathodic protection system. The developed work aims to advance the sustainability of submerged metal structures by presenting a solution combining impressed current cathodic protection with the ecological advantages of solar energy.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3403207