Maritime vessel classification based on a dual network combining EfficientNet with a hybrid network MPANet

Ship classification is an important technique for enhancing maritime management and security. Visible and infrared sensors are generally employed to deal with the challenging problem and improve classification performance. Herein, a two‐branch feature fusion neural network structure is proposed to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2024-09, Vol.18 (11), p.3093-3107
Hauptverfasser: Liu, Wenhui, Qiao, Yulong, Zhao, Yue, Xing, Zhengyi, He, Hengxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ship classification is an important technique for enhancing maritime management and security. Visible and infrared sensors are generally employed to deal with the challenging problem and improve classification performance. Herein, a two‐branch feature fusion neural network structure is proposed to classify the visible and infrared maritime vessel images simultaneously. Specifically, in this two‐branch neural network, one branch is based on a deep convolutional neural network that is used to extract the visible image features, while the other is a hybrid network structure that is a multi‐scale patch embedding network called MPANet. The sub‐network MPANet can extract fine‐ and coarse‐grained features, in which the pooling operation instead of the multi‐head attention mechanism is utilized to reduce memory consumption. When there are infrared images, it is used to extract the infrared image features, otherwise, this branch is also utilized to extract visible image features. Therefore, this dual network is suitable with or without infrared images. The experimental results on the visible and infrared spectrums (VAIS) dataset demonstrate that the introduced network achieves state‐of‐the‐art ship classification performance on visible images and paired visible and infrared ship images. Herein, a two‐branch feature fusion neural network structure is proposed to classify the visible and infrared maritime vessels images simultaneously. Specifically, in this two‐branch neural network, one branch is based on a deep convolutional neural network that is used to extract the visible image features, while the other is a hybrid network structure that is a multi‐scale patch embedding network called MPANet. The experimental results on the visible and infrared spectrums (VAIS) dataset demonstrate that the introduced network achieves state‐of‐the‐art ship classification performance on visible images and paired visible and infrared ship images.
ISSN:1751-9659
1751-9667
DOI:10.1049/ipr2.13158