Allometric Models of Aboveground Biomass in Mangroves Compared with Those of the Climate Action Reserve Standard Applied in the Carbon Market
The standardized methods used in carbon markets require measurement of the biomass and carbon stored in trees, which can be quantified through allometric equations. The objective of this study was to analyze aboveground biomass estimates with allometric models in three mangrove species and compare t...
Gespeichert in:
Veröffentlicht in: | Resources (Basel) 2024-09, Vol.13 (9), p.129 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The standardized methods used in carbon markets require measurement of the biomass and carbon stored in trees, which can be quantified through allometric equations. The objective of this study was to analyze aboveground biomass estimates with allometric models in three mangrove species and compare them with those used by the Climate Action Reserve (CAR) standard. The mangrove forest in Tabasco, Mexico, was certified with the Forest Protocol for Mexico Version 2.0 (FPM) of the CAR standard. Allometric equations for mangrove species were reviewed to determine the most suitable equation for the calculation of biomass. The predictions of the allometric equations of the FPM were analyzed with data from Tabasco from the National Forest and Soil Inventory 2015–2020, and the percentages of trees within the ranges of diameters of the FPM equations were determined. The FPM equations generated higher biomass values for Rhizophora mangle and lower values for Avicennia germinans than the seven equations with which they were compared. In the mangrove swamp of Ejido Úrsulo Galván, Tabasco, 81.8% of the biomass of A. germinans, 34.4% of Laguncularia racemosa and 24.0% of R. mangle were within the diameter range of the FPM equations, and in Tabasco, 28.5% of A. germinans, 16.7% of L. racemosa and 5.7% of R. mangle were within the diameter range. For A. germinans and R. mangle, we recommend using the equation that considers greater maximum diameters. The allometric equations of the FPM do not adequately predict a large percentage of the biomass. |
---|---|
ISSN: | 2079-9276 2079-9276 |
DOI: | 10.3390/resources13090129 |