North/South Station Keeping of the GEO Satellites in Asymmetric Configuration by Electric Propulsion with Manipulator

Geosynchronous orbit (GEO) is a very important strategic resource. In order to maximize the utilization of the GEO resources, the use of all-electric propulsion GEO platforms can greatly extend the service life of satellites. Therefore, this paper proposes a control scheme of the north/south station...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-07, Vol.10 (13), p.2340
Hauptverfasser: Ye, Lijun, Liu, Chunyang, Zhu, Wenshan, Yin, Haining, Liu, Fucheng, Baoyin, Hexi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geosynchronous orbit (GEO) is a very important strategic resource. In order to maximize the utilization of the GEO resources, the use of all-electric propulsion GEO platforms can greatly extend the service life of satellites. Therefore, this paper proposes a control scheme of the north/south station keeping (NSSK) by using electric propulsion with a manipulator. First, on the basis of the traditional calculation method of the semi-diurnal period of the orbital inclination, the calculation method of the semi-monthly period and the semi-annual period of the orbital inclination are proposed. The new method can reduce the fuel consumption and reduce the control amount and control frequency of the station keeping (SK). Secondly, a fuel-optimized NSSK algorithm by using electric propulsion with a manipulator is proposed. The algorithm can not only be applied to a large initial orbital inclination but also can unload the large angular momentum of the asymmetric satellites while keeping the north/south station, thereby avoiding the loss of control of the satellite’s attitude. The research results of this paper provide a new idea for the SK control of the GEO satellites and have great engineering application value.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10132340