Data-driven alternating current optimal power flow: A Lagrange multiplier based approach

This paper proposes a data-driven Alternating Current Optimal Power Flow (AC-OPF) method assisted by Lagrange multipliers. Stacked Extreme Learning Machine (SELM) is introduced for AC-OPF learning to avoid the time-consuming training and hyperparameter adjustment process of deep neural networks. Ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2022-11, Vol.8, p.748-755
Hauptverfasser: Lei, Xingyu, Yu, Juan, Aini, Habaer, Wu, Wencui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a data-driven Alternating Current Optimal Power Flow (AC-OPF) method assisted by Lagrange multipliers. Stacked Extreme Learning Machine (SELM) is introduced for AC-OPF learning to avoid the time-consuming training and hyperparameter adjustment process of deep neural networks. Instead of incorporating the prior physical information into the neural networks algorithm, we developed a new neural network structure for the SELM learning based on the Lagrange multipliers of the AC-OPF problem. Case studies of several IEEE benchmark systems demonstrate that the AC-OPF learning performance is improved by introducing additional Lagrange multipliers information, while the proposed method outperforms other alternatives with almost 99% learning accuracy and fast computation.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.10.024