Data-driven alternating current optimal power flow: A Lagrange multiplier based approach
This paper proposes a data-driven Alternating Current Optimal Power Flow (AC-OPF) method assisted by Lagrange multipliers. Stacked Extreme Learning Machine (SELM) is introduced for AC-OPF learning to avoid the time-consuming training and hyperparameter adjustment process of deep neural networks. Ins...
Gespeichert in:
Veröffentlicht in: | Energy reports 2022-11, Vol.8, p.748-755 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a data-driven Alternating Current Optimal Power Flow (AC-OPF) method assisted by Lagrange multipliers. Stacked Extreme Learning Machine (SELM) is introduced for AC-OPF learning to avoid the time-consuming training and hyperparameter adjustment process of deep neural networks. Instead of incorporating the prior physical information into the neural networks algorithm, we developed a new neural network structure for the SELM learning based on the Lagrange multipliers of the AC-OPF problem. Case studies of several IEEE benchmark systems demonstrate that the AC-OPF learning performance is improved by introducing additional Lagrange multipliers information, while the proposed method outperforms other alternatives with almost 99% learning accuracy and fast computation. |
---|---|
ISSN: | 2352-4847 2352-4847 |
DOI: | 10.1016/j.egyr.2022.10.024 |