Blast Furnace Hearth Lining: Post Mortem Analysis

The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 ºC for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-05, Vol.20 (3), p.814-818
Hauptverfasser: Almeida, Bruno Vidal de, Neves, Elton Silva, Silva, Sidiney Nascimento, Vernilli Junior, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 ºC for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x106 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2016-0875