Blow-Up and Global Existence Analysis for the Viscoelastic Wave Equation with a Frictional and a Kelvin-Voigt Damping

We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Wang, Fosheng, Wang, Chengqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned in this paper with the initial boundary value problem for a quasilinear viscoelastic wave equation which is subject to a nonlinear action, to a nonlinear frictional damping, and to a Kelvin-Voigt damping, simultaneously. By utilizing a carefully chosen Lyapunov functional, we establish first by the celebrated convexity argument a finite time blow-up criterion for the initial boundary value problem in question; we prove second by an a priori estimate argument that some solutions to the problem exists globally if the nonlinearity is “weaker,” in a certain sense, than the frictional damping, and if the viscoelastic damping is sufficiently strong.
ISSN:1687-9120
1687-9139
DOI:10.1155/2018/8931856