Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters
This study investigated the effects of two bacteriocin-producing Lactiplantibacillus plantarum strains on fermentation, bacterial communities, and their functions of alfalfa silage with two dry matter (DM) contents of 355 (moderate DM) and 428 (high DM) g/kg fresh weight. Before ensiling, alfalfa wa...
Gespeichert in:
Veröffentlicht in: | Fermentation (Basel) 2022-12, Vol.8 (12), p.690 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the effects of two bacteriocin-producing Lactiplantibacillus plantarum strains on fermentation, bacterial communities, and their functions of alfalfa silage with two dry matter (DM) contents of 355 (moderate DM) and 428 (high DM) g/kg fresh weight. Before ensiling, alfalfa was treated with (1) distilled water (control), (2) the commercial strain L. plantarum MTD/1, (3) bacteriocin-producing L. plantarum ATCC14917, and (4) bacteriocin-producing L. plantarum LP1-4, and ensiled for 3 d, 7 d, 14 d, 60 d, and 90 d, respectively. Application of ATCC14917 promoted lactic acid production in the moderate DM silage at the early fermentation stage (3 d). Silages treated with ATCC14917 and LP1-4 showed lower DM losses and non-protein nitrogen concentrations versus the control or MDT/1-treated silage (p < 0.05). During fermentation, a high proportion of Weissella cibaria was observed in the silages with high DM content from 3 to 60 d of ensiling, and the functions of carbohydrate and amino acid metabolisms of silage bacterial community were decreased by ATCC14917 before 60 d of ensiling. In addition, ATCC14917 also inhibited the growth of Aerococcus and Enterobacter in silage. Therefore, the bacteriocin-producing L. plantarum ATCC14917 has a great potential to improve alfalfa silage quality, nutritive value, and safety as well. |
---|---|
ISSN: | 2311-5637 2311-5637 |
DOI: | 10.3390/fermentation8120690 |