On the Zeros of Polynomials with Restricted Coefficients
Let be a polynomial of degree such that ≥ ≥ . . . ≥ ≥ ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of ) lie in 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and...
Gespeichert in:
Veröffentlicht in: | Annales mathematicae Silesianae 2023-09, Vol.37 (2), p.306-314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a polynomial of degree
such that
≥
≥ . . . ≥
≥
≥ 0. Then according to Eneström-Kakeya theorem all the zeros of
) lie in
1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7]. |
---|---|
ISSN: | 2391-4238 0860-2107 2391-4238 |
DOI: | 10.2478/amsil-2023-0016 |