On the Zeros of Polynomials with Restricted Coefficients

Let be a polynomial of degree such that ≥ ≥ . . . ≥ ≥ ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of ) lie in 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathematicae Silesianae 2023-09, Vol.37 (2), p.306-314
Hauptverfasser: Zargar, B. A., Gulzar, M. H., Ali, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a polynomial of degree such that ≥ ≥ . . . ≥ ≥ ≥ 0. Then according to Eneström-Kakeya theorem all the zeros of ) lie in 1. This result has been generalized in various ways (see [1, 3, 4, 6, 7]). In this paper we shall prove some generalizations of the results due to Aziz and Zargar [1, 2] and Nwaeze [7].
ISSN:2391-4238
0860-2107
2391-4238
DOI:10.2478/amsil-2023-0016