Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series
Let $A\in(-\infty,+\infty]$, $\Phi:[a,A)\to\mathbb{R}$ be a continuous function such that $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$ for every $x\in\mathbb{R}$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma):\sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline{\Phi}...
Gespeichert in:
Veröffentlicht in: | Karpats'kì matematinì publìkacìï 2020-01, Vol.12 (2), p.269-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $A\in(-\infty,+\infty]$, $\Phi:[a,A)\to\mathbb{R}$ be a continuous function such that $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$ for every $x\in\mathbb{R}$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma):\sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline{\Phi}(x)=\widetilde{\Phi}(x)/x$ and $\Gamma(x)=(\widetilde{\Phi}(x)-\ln x)/x$ for all sufficiently large $x$, $(\lambda_n)$ be a nonnegative sequence increasing to $+\infty$, and $F(s)=\sum\limits\limits_{n=0}^\infty a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximal term $\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge0\}$ and central index $\nu(\sigma,F)=\max\{n\ge0:|a_n|e^{\sigma\lambda_n}=\mu(\sigma,F)\}$ are defined for all $\sigma |
---|---|
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.12.2.269-279 |