Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees
We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic tr...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2012-01, Vol.8, Issue 4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a specific class of tree structures that can represent basic
structures in linguistics and computer science such as XML documents, parse
trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We
present axiomatizations of the monadic second-order logic (MSO), monadic
transitive closure logic (FO(TC1)) and monadic least fixed-point logic
(FO(LFP1)) theories of this class of structures. These logics can express
important properties such as reachability. Using model-theoretic techniques, we
show by a uniform argument that these axiomatizations are complete, i.e., each
formula that is valid on all finite trees is provable using our axioms. As a
backdrop to our positive results, on arbitrary structures, the logics that we
study are known to be non-recursively axiomatizable. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-8(4:12)2012 |