Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2

Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum materials 2021-11, Vol.6 (1), p.1-8, Article 94
Hauptverfasser: Sun, Z. L., Wang, A. F., Mu, H. M., Wang, H. H., Wang, Z. F., Wu, T., Wang, Z. Y., Zhou, X. Y., Chen, X. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Realizing applicably appreciated spintronic functionalities basing on the coupling between charge and spin degrees of freedom is still a challenge. For example, the anisotropic magnetoresistance (AMR) effect can be utilized to read out the information stored in magnetic structures. However, the application of AMR in antiferromagnet-based spintronics is usually hindered by the small AMR value. Here, we discover a colossal AMR with its value reaching 1.84 × 10 6 % at 2 K, which stems from the field-induced metal-to-insulator transition (MIT), in a nearly Dirac material EuMnSb 2 . Density functional theory calculations identify a Dirac-like band around the Y point that depends strongly on the spin–orbit coupling and dominates the electrical transport. The indirect band gap at the Fermi level evolves with magnetic structure of Eu 2+ moments, consequently giving rise to the field-induced MIT and the colossal AMR. Our results suggest that the antiferromagnetic topological materials can serve as a fertile ground for spintronics applications.
ISSN:2397-4648
2397-4648
DOI:10.1038/s41535-021-00397-4