Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion

This study presents a computer vision application of the structure from motion (SfM) technique in three dimensional high resolution gully monitoring in southern Morocco. Due to impractical use of terrestrial Light Detection and Ranging (LiDAR) in difficult to access gully systems, the inexpensive Sf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2014, Vol.6 (8), p.7050-7080
Hauptverfasser: Kaiser, Andreas, Neugirg, Fabian, Rock, Gilles, Müller, Christoph, Haas, Florian, Ries, Johannes, Schmidt, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a computer vision application of the structure from motion (SfM) technique in three dimensional high resolution gully monitoring in southern Morocco. Due to impractical use of terrestrial Light Detection and Ranging (LiDAR) in difficult to access gully systems, the inexpensive SfM is a promising tool for analyzing and monitoring soil loss, gully head retreat and plunge pool development following heavy rain events. Objects with known dimensions were placed around the gully scenes for scaling purposes as a workaround for ground control point (GCP) placement. Additionally, the free scaling with objects was compared to terrestrial laser scanner (TLS) data in a field laboratory in Germany. Results of the latter showed discrepancies of 5.6% in volume difference for erosion and 1.7% for accumulation between SfM and TLS. In the Moroccan research area soil loss varied between 0.58 t in an 18.65 m2 narrowly stretched gully incision and 5.25 t for 17.45 m2 in a widely expanded headcut area following two heavy rain events. Different techniques of data preparation were applied and the advantages of SfM for soil erosion monitoring under complex surface conditions were demonstrated.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs6087050