Design and development of plumbagin loaded poly (ε -caprolactone) nanoparticles for improved cytotoxicity

Poly (ε -caprolactone) nanoparticles were investigated as an injectable nanocarrier for the delivery of natural anticancer naphthoquinones plumbagin with the primary aim of improvement in its solubility, drug release profile and in vitro cytotoxicity. Plumbagin loaded polymeric nanoparticle system w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomedicine research journal 2020-11, Vol.5 (4), p.316-323
Hauptverfasser: Harshad Kapare, Sarika Metkar, Satish Shirolkar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly (ε -caprolactone) nanoparticles were investigated as an injectable nanocarrier for the delivery of natural anticancer naphthoquinones plumbagin with the primary aim of improvement in its solubility, drug release profile and in vitro cytotoxicity. Plumbagin loaded polymeric nanoparticle system was fabricated by nanoprecipitation method and the composition was optimized using factorial design approach. Nanoparticles showed particle size and encapsulation efficiency of 186 ± 1 - 300 ± 3 nm and 65.00+ 1.50- 74.00+ 1.80% respectively. Optimization was carried out and optimized formulation showed sustained drug release over a period of 24 h. Total growth inhibition of cells in a designed time period (TGI) concentration was decreased by 56.95 % for PNP as compared to Plumbagin in human breast cancer MCF-7 cells indicates improved cytotoxicity of Plumbagin. The formulation development study proven that the developed PNP system exhibited improved solubility, sustained drug release, enhanced in vitro cytotoxicity in MCF-7 cell lines in comparison with Plumbagin. Thus the designed formulation approach can be further developed as novel carrier for plumbagin to enhance its biopharmaceutical properties
ISSN:2476-3489
2476-7123
DOI:10.22034/nmrj.2020.04.002