Elevated CO2 ameliorate the negative effects of high temperature on groundnut (Arachis hypogaea)- Studies under free-air temperature elevation
Four groundnut (Arachis hypogaea L.) genotypes- Narayani, Dharani, K-6 and K-9 were assessed for growth and yield responses at elevated temperature of 3.0 ± 0.5°C above ambient canopy temperature (eT) and its interaction with elevated CO of 550 ± 50ppm (eT+eCO ) under Free Air 2 2 Temperature Elevat...
Gespeichert in:
Veröffentlicht in: | Journal of agrometeorology 2019-12, Vol.21 (4), p.411-419 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four groundnut (Arachis hypogaea L.) genotypes- Narayani, Dharani, K-6 and K-9 were assessed for growth and yield responses at elevated temperature of 3.0 ± 0.5°C above ambient canopy temperature (eT) and its interaction with elevated CO of 550 ± 50ppm (eT+eCO ) under Free Air 2 2 Temperature Elevation (FATE) facility. The study revealed that eT significantly decreased photosynthetic rate (A ) of all groundnut genotypes whereas eT+eCO condition ameliorated the ill effects of eT. The net 2 impact of eT on A was higher than transpiration rate (Tr) and this reflected in decreased WUE with all net genotypes. WUE improved significantly at eT+eCO with increased A and decreased Tr. Increase in 2 net canopy temperature (eT) resulted decreased relative water content (RWC), cell membrane stability and increased osmotic potential, Malondialdehyde (MDA) content and accumulation of proline. Elevated CO 2 along with eT (eT+eCO ) facilitated these parameters to recover to that of ambient controls, revealing the 2 ameliorative effect of eCO . Similar responses were recorded for biomass and yield parameters. Among 2 the selected groundnut genotypes, superior performance for seed yield at high temperature of >40°C by K-9 was due to ability to maintain better reproductive capacity and Dharani was responsive to elevated CO even at high temperature, indicating the genotypic variability. |
---|---|
ISSN: | 0972-1665 2583-2980 |
DOI: | 10.54386/jam.v21i4.275 |