Organ-on-a-Chip Microfluidic Systems for Tracking Exosomal Dynamic Communication
Organ-on-a-chip microfluid systems (OCMS) are miniaturized three-dimension models of human tissue and organ, designed to recapitulate the crucial physiological and biological parameters of their corresponding in vivo parts. They have emerged as a powerful multifunctional tool for various application...
Gespeichert in:
Veröffentlicht in: | OpenNano 2023-09, Vol.13, p.100179, Article 100179 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organ-on-a-chip microfluid systems (OCMS) are miniaturized three-dimension models of human tissue and organ, designed to recapitulate the crucial physiological and biological parameters of their corresponding in vivo parts. They have emerged as a powerful multifunctional tool for various applications such as personalized medicine, drug screening, due to its ability to show biomimetic composition, designs, and functions. Recently, OCMS have been employed to model and decode inter-organ communication via exosomes. Exosomes are biological nanovesicles with approximately 30-200 nm diameter, released from most of the cell types and participate in various cellular functions via intracellular communication and by carrying different cargoes including protein, and nucleic acids. Under pathological conditions such as cancer, the release of exosomes enhances tremendously, which are either fused or internalized by the recipient cells to elicit specific biological responses. The research pertaining to the exosomal communication has employed different methods for characterizing their release by the donor cells and uptake by the recipient cells, such as nano tracking analyzer, protein quantification, transmission electron microscopy (TEM), scanning EM (SEM), and immunogold-EM, exosome labeling kits, microbead-based flow cytometry. However, the research associated with the regulation of exosomal release and uptake has been impeded by the dearth of advanced techniques for capturing dynamics of exosomes. Here in, we discuss the advances in biosensing for tracking exosomal dynamic communication in OCMS, which will open new avenues of exosomal research using microfluidic engineering for modeling intracellular communication in OCMS. |
---|---|
ISSN: | 2352-9520 2352-9520 |
DOI: | 10.1016/j.onano.2023.100179 |